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Mixing, structure and scaling of the jet
in crossflow
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The mixing of the round jet normal to a uniform crossflow is studied for a range
of jet-to-crossflow velocity ratios, r, from 5 to 25. Planar laser-induced fluorescence
(PLIF) of acetone vapour seeded into the jet is used to acquire quantitative two-
dimensional images of the scalar concentration field. Emphasis is placed on r = 10
and r = 20 and a few select images are acquired up to r = 200. The Reynolds number
based on the jet exit diameter, d, and the exit velocity varies from 8400 to 41 500.
Images are acquired for conditions in which the product rd is held constant, requiring
decreasing d for increasing r.

Results from this experimental study concern structural events of the vortex inter-
action region, and mixing and mean centreline concentration decay in the near and
far fields. The results cover all three regions of the transverse jet, and suggest that the
jet scales with three length scales: d, rd and r2d.

Events within the vortex interaction region display d-scaling, including the crossflow
boundary layer separation and roll-up. Over the range of velocity ratios studied, the
vortex interaction region shows r-dependent variations in the flow field, including the
emergence of jet fluid in the wake structures for r > 10 and a slower development of
the counter-rotating vortex pair (CVP) in higher-r jets.

The trajectory and physical dimension of the jet in both the near and far field
display rd-scaling. The near field is characterized by a centreline concentration decay
along the centreline coordinate s of s−1.3, different from the decay rate (s−1) of the free
jet. When normalized by rd, the decay of each velocity-ratio jet branches away from
the s−1.3 decay, approaching a decay of s−2/3, a rate predicted by modelling efforts.
The branch points represent a transition in the flow field from enhanced mixing to
reduced mixing compared to the free jet. When normalized by r2d, the branch points
occur at a uniform jet position, s/r2d = 0.3, which is viewed to be the division between
the near and far fields. Self-similarity is not seen in the near field, but may be present
in the far field.

The view of the branch points as a place of transition in the flow is supported by
the probability density function (p.d.f.) of concentration along the upper edge of the
jet. Before the branch points, the p.d.f.s are non-marching in character, and after the
branch points, they are tilted in character.

Instantaneously, the CVP is asymmetric in shape and concentration. End views
reveal extensive motion of the CVP and plan views show this motion can occur in
both axisymmetric and sinusoidal motion. Ensemble-averaged images show the jet
concentration is asymmetric about the centreline plane.
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Figure 1. The known vortical structures of the jet in the crossflow, after Fric & Roshko (1994).

1. Introduction
The jet in crossflow has many practical technical applications, including use in

primary combustion, overfire cooling, industrial mixing and emergency venting. The
flow field can be witnessed issuing from the exhaust stacks of most power plants, and
behind steam locomotives. In many of these applications, the resulting temperature
downstream of the jet, the concentration of a hazardous material entering the cross-
flow from the jet, or the trajectory and physical path of the jet are important design
parameters. These needs require quantitative evaluation of the jet fluid concentration,
both instantaneous and ensemble-averaged, as it mixes with the crossflow fluid.

The results presented here are based solely on planar images of the instantaneous
jet concentration, where the jet exit concentration is 100%. The instantaneous picture
of the jet concentration field allows for both the identification and analysis of the jet
structure and for the evaluation of statistically based quantities such as the maximum
centreline concentration decay.

The flow field of the jet in crossflow depends primarily upon the ratio of the jet
momentum to the crossflow momentum. It is customary to define the effective velocity
ratio, r, as the square root of the momentum-flux ratio,

r =

(
ρjU

2
j

ρcfU
2
cf

)1/2

. (1.1)

In the case of equal-density flows, r = Uj/Ucf . Here U is velocity; ρ is density, and
subscripts j and cf refer to jet properties and crossflow properties respectively.

The jet in crossflow consists of four known vortical structures shown in figure 1: the
horseshoe vortices, the jet shear layer, the wake structures and the counter-rotating
vortex pair (CVP) (Fric & Roshko 1994). The horseshoe vortices form upstream of
the jet exit, wrapping around the exiting jet column. The jet shear layer consists of
the ring vortices in the jet boundary. The wake structures form downstream of the jet
column, and persist and convect far downstream of the exit nozzle. The jet column
transitions to the CVP, the dominant vortical structure of the transverse jet after the
jet has turned in the crossflow direction.
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Analysis of the vortical structure of the transverse jet includes work focusing on
the horseshoe vortex system (Krothapalli, Lourenco & Buchlin 1990; Kelso & Smits
1995), the wake vortex system (Fric & Roshko 1994; Kelso, Lim & Perry 1996;
Eiff, Kawall & Keffer 1995; McMahon, Hester & Palfery 1971; Moussa, Trischka &
Eskinazi 1977), and the vorticity dynamics of the exiting jet (Coelho & Hunt 1989;
Needham, Riley & Smith 1988; Sykes, Lewellen & Parker 1986). Together, these
authors establish that the horseshoe vortex system has oscillating modes that persist
at the same Strouhal number as the wake vortices. For transverse jets issuing from a
pipe extending into the crossflow, the wake vortices lock onto the shedding vortices
behind the pipe (Eiff et al. 1995), and for jets injected flush with the wall, the Strouhal
number based on the jet diameter closely matches the value obtained from a cylinder
with the same diameter (Moussa et al. 1977). (St = 0.15 for r = 2 to r = 8, falling
to St = 0.06 at r = 20). Note that all Strouhal numbers are based on the jet exit
diameter, d.

Fric & Roshko (1994) identify two sources of vorticity in the jet in crossflow:
the crossflow boundary layer, and the jet exit boundary layer. Using smoke-wire
visualization, they provide evidence that it is the crossflow boundary layer which
provides the vorticity of the wake structures. They identify separation events of the
crossflow boundary layer, which form vortices attaching to the lee side of the jet,
turning up and becoming the wake structures. The turning-up mechanism is also seen
in tornadoes. Kelso et al. (1996) further classify these events based on variations in
Reynolds number and velocity ratio, and Coelho & Hunt (1989) note that diffusion
of vorticity from the jet into the wake is weak. The basis of the argument Fric &
Roshko present is photographic evidence, and a Thwaites boundary layer calculation
that predicts the crossflow boundary layer separation position in relation to the jet
column of diameter d. Their argument is based on a local length scale, d, just as the
Strouhal number measurements are.

The jet exit diameter is not the only length scale present in the jet in crossflow.
Broadwell & Breidenthal (1984) consider the jet exit as a point source of momentum
flux (thereby analysing a region far downstream of the jet nozzle) and conclude that
the only global length scale is rd, the product of the velocity ratio and the jet exit
diameter. The rd length scale was used by Pratte & Baines (1967) to collapse the
centreline trajectories of jets of different r, using the correlation

y

rd
= A

( x
rd

)m
, (1.2)

with A = 2.05 and m = 0.28 for r = 5 to r = 35 (Pratte & Baines used photographs
of flood-lit jet-seeded smoke to define the centreline). The coordinates x, y and z are
defined in figure 1, offset from the true origin centred at the jet exit. Jet trajectory is still
most often correlated by a functional form based on jet diameter, y/d = A(r)n(x/d)m;
a good summary is provided by Margason (1993). The Pratte & Baines formulation
reveals the utility of the rd length scale for comparing jets with different r. Pratte &
Baines, in fact, normalize distances in the jet using the rd length scale, declaring that
the far field of the transverse jet begins at x = 3.2 rd.

A third length scale, r2d, was used by Keffer & Baines (1963) to collapse jet
trajectory data for r = 6, r = 8 and r = 10 up to 8 jet diameters from the jet exit.

Previous results on two additional topics, centreline concentration decay and
self-similarity, are relevant to this discussion. Maximum centreline concentration
decay results have been presented by Patrick (1967), Broadwell & Breidenthal (1984)
and Hasselbrink & Mungal (1996). Patrick (1967) identifies a maximum centreline
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concentration decay proportional to s−1.2; his results extend directly from the jet exit.
The Broadwell & Breidenthal (1984) model predicts a far-field decay proportional to
x−2/3, a result matched by Hasselbrink & Mungal (1996), using simple algebraic ex-
pressions derived from conservation of mass and momentum. The analysis of Hassel-
brink & Mungal (1996), and to a lesser extent that of Broadwell & Breidenthal
(1984), relies upon the jet obtaining self-similarity through a range of velocity ratio,
r. Temperature profiles in the z = 0 plane have been shown to collapse to a Gaussian
error curve using the functional form (T − To)/(Tmax − To) based on distances y
normalized by the half-width at half maximum (Kamotani & Greber 1972). Here
To is the crossflow temperature, Tmax the local maximum jet temperature, and T
the local jet temperature. Velocity profiles have also been shown to collapse using
(U − Uo)/(Umax − Uo) (Keffer & Baines 1963), where Uo is the crossflow velocity,
Umax the local maximum jet velocity, and U the local jet velocity. Neither Kamotani
& Greber (1972) nor Keffer & Baines (1963) conclude that the transverse jet is a
self-similar flow. Keffer & Baines (1963) and Patrick (1967) state that the transverse
jet does not achieve self-similarity, while Chassaing et al. (1974) refer to the far-field
region as the zone of velocity profile similarity.

The possibility of self-similarity is in direct contrast to a growing body of evidence
that the transverse jet shows evolving characteristics which depend upon r. Kelso et al.
(1996) define different vortical interactions at the nozzle depending upon velocity ratio
(and Reynolds number). Similarly Fric & Roshko (1994) focus on the r = 4 jet because
the bursting of the boundary layer fluid into the wake structures is most pronounced
there. At low values of r, Andreopoulos & Rodi (1984) present the r = 0.5 jet as
a flow that, downstream of the jet exit, re-entrains into the boundary layer with no
memory of the jet. This is certainly not the case in the range from r = 5 to r = 25
studied here.

This work presents the experimental results from an extensive study of the con-
centration field of the jet in crossflow. The instantaneous images obtained show the
vortical structure of the jet, and statistical quantities derived from these images reveal
further insights. The results concern both the vortex interaction region of the jet
and the jet near and far field. They are unified by an analysis and presentation of
the length scales affecting the flow field. In § 2, the experimental methods will be
presented, and in § 3 the run conditions are discussed. Section 4 will present results
from the jet trajectory and structure, and § 5 will propose an extension to the Fric–
Roshko mechanism to explain the presence of jet fluid in the wake structures. Section
6 will show the maximum centreline concentration measurements; § 7 the related p.d.f.
results. The discussion will end with conclusions in § 8. Full details on all aspects of
this work can be found in Smith (1996).

2. Experimental methods
This section describes the experimental techniques used to acquire planar images

of the jet concentration field.

2.1. Facility

All images are acquired in a vertical wind tunnel, figure 2, designed and built
specifically for PLIF studies. The tunnel consists of three sections: an inlet, a test
section, and an exhaust section. The inlet section turns and conditions the flow field,
yielding a smooth test section crossflow. It consists of a single radius contraction
followed by three screens, honeycomb (0.317 cm cell diameter, 1.27 cm thick), and a
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Figure 2. Flow facility schematic.

final screen (63% open area, 32 mesh per in.). The tunnel crossflow is sensitive to
the uniformity of the final screen, and care is taken in its selection and maintenance.
Common household screens (15 mesh per in.) and a 60 cm high 4-sided pyramid aid
in turning the flow upward into the tunnel.

Hot-wire measurements are used to characterize the tunnel crossflow. It has an
average velocity of 5.0 m s−1 (which varies spatially across the tunnel less than 5 %),
and a turbulence intensity of 0.8 %. The statistics are based on more than 400 data
locations spread uniformly throughout the tunnel; the regions near the jet flow are
carefully checked for flow non-uniformity, and none is present.

The tunnel test section is 54 cm by 54 cm and 94 cm in length. The jet is placed
flush with the tunnel wall (20 cm above the final screen) using a jet plenum and
removable nozzle block shown in figure 3. Perforated plate and honeycomb sections
are placed in the plenum to ensure uniform jet flow. A pressure transducer and
type K thermocouple are used to record pressure and temperature for run-time flow
measurements. The use of the removable nozzle block allows quick changes in nozzle
diameter. The nozzle diameters available (and their design velocity ratio) are 20 mm
(r = 2.5; not studied), 10 mm (r = 5), 5 mm (r = 10), 3.3 mm (r = 15), 2.5 mm (r = 20)
and 2.0 mm (r = 25).

The exhaust section maintains the same tunnel cross-section for another 94 cm,
ensuring the test section is not affected by the connection to a round exhaust duct.
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Figure 3. The jet plenum arrangement.

The tunnel is powered by a 5 h.p. centrifugal blower, 10 m downstream of the exhaust
section. The exhaust section also provides optical access for end-view imaging.

2.2. Planar laser-induced fluorescence

Images of the concentration field are obtained using planar laser-induced fluorescence
(PLIF), a non-intrusive optical diagnostic technique. Comprehensive treatments are
given by Hanson (1988) and Eckbreth (1988); only a brief review will be presented
here. PLIF uses a monochromatic light source that is formed into a sheet and
passed through a flow field. The light source excites an energy transition in a chosen
marker species, which fluoresces upon relaxation. The fluorescence is captured on an
imaging array. PLIF can be used to quantitatively measure molecular number density
(and thereby density, concentration and mixture fraction), temperature, pressure and
velocity.

Acetone vapour is the current tracer of choice for concentration studies in turbulent
flow fields at room temperature and pressure. Acetone fluorescence is a linear function
of both incident laser energy and acetone concentration and no self-quenching occurs
(Lozano, Yip & Hanson 1992). Room air can be used with acetone fluorescence
because its fluorescence is not quenched by O2, as is the case for phosphorescence of
biacetyl. Also, acetone absorbs in the uv (225–320 nm; 278 nm peak) and emits in the
visible (350–550 nm, 435 nm peak), allowing for the use of non-gated, non-intensified
CCD arrays, giving high dynamic range (upwards of 200) and high signal to noise
(upwards of 200) images.

In the current experiment, PLIF is used exclusively to measure concentration of the
jet fluid as shown schematically in figure 4. A XeCl excimer laser provides a 400 mJ,
308 nm pulse which is formed into a sheet (f = 75 mm cylindrical lens) and focused
to a waist (f = 1 m lens) in the test section. The sheet thickness is 0.6 mm in the
measured flow field regions. The jet flow is seeded with acetone vapour (∼ 10 % by
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Figure 4. PLIF imaging systems.

volume) by bubbling filtered air through two pressurized cylinders (in series, 10 cm
diameter) filled 20 cm deep with liquid acetone. Bypass air is used for low-volume-flux
cases to ensure that condensation at the nozzle lip does not occur, as witnessed in
preliminary data. Heating tape applied to the jet plenum ensures the exit temperature
of the jet is equal to the crossflow temperature, a necessary condition for the number
density of acetone molecules to map uniformly to jet concentration. A 512 by 512 pixel
CCD array images the fluorescence. The camera is non-intensified, thermoelectrically
cooled (−40 ◦C), and has 16-bit pixel resolution.

Each image is individually corrected for background levels, laser sheet non-
uniformities and laser absorption. Absorption of the laser energy follows the Beer–
Lambert law. Absorption corrections for experiments with collimated sheets are
available (Clemens 1991; Karasso 1994). However, the large imaging area (25 cm by
25 cm) in this experiment required the use of an expanding laser sheet; numerical
details of a Beer–Lambert correction using an expanding sheet are found in Smith
(1996).

Final values of concentration are established by setting the jet potential core
values to C = 100 %. End- and plan-view images do not contain the potential
core, so the concentration values are established by comparing the common line of
data from the ensemble-averaged plan or end view and the appropriate ensemble-
averaged side view. Similarly, the d = 3.3 mm, d = 2.5 mm and d = 2.0 mm noz-
zles are not large enough to produce a potential core region where 10–20 pixels
are completely filled with pure jet fluid. The concentration in these cases is es-
tablished by comparing ensemble-averaged images from data of the same r, using
d = 5.0 mm.

For mixing measurements, the most important criterion in designing a PLIF set-
up is the image resolution. The laser sheet thickness (0.6 mm) sets the minimum
resolution, and the camera must be placed so each pixel measures a value close to
the sheet thickness. In this experiment all side and plan views use a pixel width which
measures 0.51 mm at the imaging plane. Resolution cannot be improved by moving
the camera closer to the imaging plane.
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Jet Crossflow

r Rej rd Ucf d δ1 θ δ1/d θ/d

- - (mm) (m s−1) (mm) (mm) (mm) - -

5 16 600 50 5.0 10 0.15 0.06 0.11 0.06
10 16 600 50 5.0 5 0.10 0.04 0.22 0.11
10 33 000 100 5.0 10 0.10 0.05 0.11 0.06
15 16 600 50 5.0 3.3 0.07 0.04 0.33 0.17
15 25 000 75 5.0 5 0.07 0.04 0.22 0.11
20 16 600 50 5.0 2.5 0.06 0.04 0.44 0.22
20 33 000 100 5.0 5 0.07 0.04 0.22 0.11
25 16 600 50 5.0 2.0 0.06 0.03 0.55 0.28
25 41 500 125 5.0 5 0.07 0.04 0.22 0.11
10 33 000 200 2.5 20 0.16 0.06 0.10 0.04
20 33 000 200 2.5 10 0.10 0.05 0.18 0.07

Table 1. Tunnel run conditions. δ1 is the boundary layer displacement thickness,
θ the momentum thickness.

3. Run conditions
In this experiment, the rd length scale is held constant through a range of velocity

ratios. The effect is accomplished by changing the nozzle diameter, d, for each change
in velocity ratio, r. The camera is held at a fixed distance throughout the entire data
set, due to the resolution limitations of the laser sheet. Increasing d at a fixed r has
the effect of magnifying the imaged region, but the magnification is caused by an
increase in physical dimensions.

Data sets in this experiment consist of 400 images each for side and end views and
300 images each for plan views. Side-view data sets are acquired at r = 5 (d = 10 mm),
r = 10 (d = 5 mm, 10 mm), r = 15 (d = 3.3 mm, 5 mm), r = 20 (d = 2.5 mm, 5 mm)
and r = 25 (d = 2.0 mm, 5 mm), as shown in table 1. Each side-view case is imaged at
two nozzle diameters. The first gives an image where rd = 50 mm (an image width of
5 rd, and Rej = 16 600) and the second gives a magnified data set (2 rd to 3.3 rd wide,
depending upon the case). Smaller sets of 10 to 50 images are acquired for r = 5 to
r = 200. End- and plan-view images are acquired at r = 10 and r = 20 to allow for
imaging in multiple planar locations, shown in figure 5.

Keeping rd constant holds Rej constant as well, but the different jet diameters used
changes the relative sizes of the jet boundary layer, crossflow boundary layer and
jet exit diameter. Boundary layer characteristics of both the (non-interacting) jet and
crossflow are calculated using STAN7, a boundary layer code (Crawford & Kays
1976). Transition to turbulent boundary layers is assumed to occur at a momentum
thickness Reynolds number of 162. Table 1 summarizes the tunnel conditions at
each case. All displacement and momentum thicknesses are presented at the position
of the jet exit. The combination of r and Rej uniquely identifies all cases with
Ucf = 5.0 m s−1. Two cases with Ucf = 2.5 m s−1 are included, corresponding only to
the ensemble-averaged plan views to be shown.

3.1. Resolution and signal-to-noise ratio

The fidelity of the images acquired depends upon the image resolution and the
signal-to-noise ratio. The finest scalar fluctuations occur at the Batchelor scale,
λB = βδReδ

−0.75Sc−0.5, where δ is the local jet width, β a constant, Reδ the Reynolds
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Figure 5. Imaging planes for (a) plan views and (b) end views.

r x = rd x = 4 rd

5 70 47
10 56 37
15 43 25
20 39 22
25 25 13

Table 2. A summary of signal to noise ratio.

number based on the local jet velocity and width, and Sc the Schmidt number.
Measurements in a free jet by Dowling & Dimotakis (1990) suggest β ≈ 25. Following
the work of Clemens & Mungal (1995) and Karasso & Mungal (1996), a figure of
merit L/λB will be used to characterize the ability of an image to resolve the finest
scales of mixing. L is the largest probe dimension, and λB is the Batchelor scale, with
β = 1. Thus L/λB values of less than 25 may be considered resolved.

The L/λB values in this experiment lie between 10.0 and 13.7 for end- and side-view
images. The local Reynolds number in the transverse jet decreases with s; these values
are based on the jet exit Reynolds number making the L/λB values a conservative
estimate. Side-view images are only resolved for regions where x > rd because the jet
width must grow to a sufficient size. The ability of plan views to resolve the Batchelor
scale is not considered because they are not used in mixing statistics.

The signal-to-noise ratio (SNR) describes the camera’s ability to recreate the fluo-
rescence image. SNR varies spatially across the image, with higher values occurring
in regions of higher acetone concentration. Typical SNR values in the jet near and
far field range from 13 to 70 and are listed in table 2 at two downstream locations.
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Figure 6. Side-view ensemble-averaged concentration fields for (a) r = 10, (b) r = 15, (c) r = 20,
and (d) r = 25. Rej = 16 600 and image frame is 5 rd by 4 rd in all cases. Contour levels are given
below each image in percent jet fluid concentration.

4. Jet trajectory and structure
The instantaneous images and the ensemble average acquired for each data set are

used to obtain trajectory, structure and scaling data. These results are presented in
this section.

4.1. Trajectory and scaling of physical dimensions

The jet trajectory presented here is defined to be the locus of points in the z = 0
plane at which the maximum concentration value occurs in a line perpendicular
to the local jet direction. Thus this trajectory is based upon local maximum mean
concentration, and not upon velocity measurements. Kamotani & Greber (1972)
and Haniu & Ramaprian (1989) show that the trajectory based on maximum local
velocity penetrates 5–10% deeper (+y) into the flow than the corresponding scalar
concentration trajectory.

Trajectory data are obtained from the ensemble-averaged contour plots of the side-
view images shown in figure 6, where each average is obtained from 400 instantaneous
images acquired at the same tunnel run conditions. Each image is shown in a frame
5 rd wide and 4 rd high.

Trajectory data are displayed in figure 7 for r = 5 to r = 25 using the rd = 50 mm
data. The x- and y-coordinates in the trajectory plot are normalized by the length
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Figure 7. Centreline jet trajectory normalized by (a) rd, (b) d and (c) r2d.

scale rd in figure 7(a), and for comparison plots normalized by d (figure 7b) and r2d
(figure 7c) are included. The d-scaled plot shows that the jet penetration increases with
increasing r, and as expected the r = 5 jet does not penetrate into the crossflow as
deeply as the r = 25 case. The r2d length scale clearly does not collapse the trajectory
profiles of jets with different r. The trajectory plot given by Keffer & Baines (1963)
showed similar trajectories for r = 6, r = 8 and r = 10 to x/r2d = 0.05 only, and the
r = 5 and r = 10 jets in this data set do converge in that limited range.

The rd-scaled trajectories, figure 7(a), do not collapse completely, as the data of
Pratte & Baines (1967) do. The difference may result because the Pratte & Baines
(1967) data extend to 100 rd and are acquired using a pipe that extends into the
crossflow. The use of a jet flush with the tunnel wall may cause an r-dependent
low-pressure region behind the jet exit which affects the trajectory. Fric & Roshko
(1994) identify a low-pressure region for r 6 8 but these results are likely not to
be representative of the higher velocity ratio regime. To date there are no pressure
measurements near the jet exit for velocity ratios from 10 to 25. The best fit of the
trajectory data in figure 4 gives values of A = 1.5 and m = 0.27 in the Pratte & Baines
formulation, equation (1.2).

The advantage of normalizing by rd instead of d or r2d is also apparent when the
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Figure 8. Concentration profiles of ensemble-averaged jets, (a) x = rd, (b) x = 4 rd.
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physical dimensions of the jet are considered. Ensemble-averaged contour plots of
the r = 10, r = 15, r = 20 and r = 25 were displayed in figure 6. Profiles of the
ensemble-averaged concentration at x = rd and x = 4 rd are shown in figure 8. The
profiles reveal that up to a factor of 5 difference in r (5 to 25), the jet dimension scales
with rd, and the jet height (ymax − ymin) is equal to approximately 2 rd at x = 4 rd
downstream.

The best evidence that the jet size scales with rd is the end-view ensemble-averaged
contour images, figure 9, which show the r = 10 and r = 20 cases at x = rd, x = 2 rd
and x = 4 rd. These images clearly show the CVP of each jet. The physical dimensions
of these two jets at the same x/rd are seen to be essentially the same.

The low-concentration region (≈ 0.1%) below the r = 15 and r = 20 jets, figure 6,
are the result of jet fluid in the wake structures, an issue to be discussed in § 5 after
instantaneous images are considered. This effect is also seen in figure 9, occurring as
a finger of jet fluid pointing from the jet body to the tunnel wall for the r = 20 case.

4.1.1. Jet asymmetry

The ensemble-averaged end views, figure 9, also reveal that the jet concentration
imaged in this experiment is not symmetric about the z = 0 plane. Symmetry in the
jet in crossflow has not been previously discussed, except by Kuzo (1995), and has
been implicitly assumed by previous researchers. The results from this study cannot
confirm whether the jet in crossflow is a symmetric flow or not, but the possibility
that the flow is not symmetric needs to be considered.

In this experiment, multiple planes are imaged for an array of tunnel conditions,
with days often passing between runs of the same tunnel set-up. In every case, the
asymmetry seen in the ensemble-averaged images remained the same in degree and
direction. The crossflow is carefully checked for asymmetry (none is found), and care
is taken to ensure uniform flow from the jet plenum. Cylindrical uniformity of the
exit nozzles is checked, and they are accurate to 0.005 cm. The jet plenum, figure
3, contains flow conditioning devices to ensure a uniform jet exit, although nozzle
diameters are typically too small to allow jet exit plane velocity measurements to be
obtained with hot-wire anemometry. In brief, the experimental set-up is symmetric to
laboratory accuracy, but the jet imaged is not symmetric. The worst case of asymmetry
found is the r = 20 jet at x = 4 rd, figure 9(f); in that case the peak concentration



Mixing in the jet in crossflow 95

Rej=33000

2rd by 2.5rd

4.7% max value

Rej=33000

2rd by 2.5rd

11.8% max value

Rej=33000

2.5rd by 3.0rd

8.0% max value

Rej=16600

3.0rd by 4.0rd

4.8% max value

Rej=33000

2.5rd by 3.0rd

3.0% max value

Rej=16000

3.0rd by 4.0rd

2.7% max value

(a)  r = 10 (b)  r = 10 (c)  r = 10

(d )  r = 20 (e)  r = 20 ( f )  r = 20

rd 2rd 4rd

rd 2rd 4rd

0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5 0, 1, 2, 3, 4, 5, 6, 7 0, 0.75, 1.5, 2.2, 3, 3.75, 4.5

0, 0.3, 0.8, 1.5, 2.25, 3, 3.75, 4.5 0, 0.16, 0.5, 1, 1.5, 2, 2.5, 2.75 0, 0.1, 0.5, 1, 1.5, 2, 2.5

Figure 9. Ensemble-averaged end-view concentration fields for x = rd, 2rd and 4rd. Contour levels
are listed below each case, given in % concentration of initial jet fluid. Rej , frame size and maximum
concentration are given for each case. (a–c) r = 10; (d–f ) r = 20.

in the z > 0 region is twice that of the z < 0 region. Images (d) and (e) from figure
9 are from the same tunnel conditions. In this case, the asymmetry does not develop
until after x = rd (although very slight asymmetry is seen in figure 9d).

A literature review reveals a growing body of experimental work where the average
concentration profile is asymmetric about the z = 0 plane. Kamotani & Greber
(1972) show temperature profiles from an r = 7 jet at distances of 3 d, 15 d and 70 d
downstream of the jet exit. The 3 d average is symmetric, while the 15 d and 70 d
averages are not. Asymmetries are also seen in the work of Eiff (1996), McCann &
Bowersox (1996) and Liscinsky, True & Holdeman (1996). The only author to discuss
asymmetry is Kuzo (1995), who presents end-view particle image velocimetry results,
and shows that asymmetry occurs below a cut-off Reynolds number. The overall
findings of several researchers, except Kuzo (1995), point to increasing asymmetry
with increasing r and increasing distance downstream.

This body of evidence is not large because often symmetry is assumed. Computa-
tional investigations employ boundary conditions and grids that cover only half the
flow field (Kim & Benson 1992; Sykes et al. 1986), and laboratory efforts display only
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Figure 10. Ensemble-averaged plan-view images of jet concentration. (a) r = 10, (b, c) r = 20.

half the flow field (Andreopoulos & Rodi 1984; Moussa et al. 1977; Crabb, Durão &
Whitelaw 1981; Sherif & Pletcher 1991; Fearn & Weston 1974).

It should be noted that as a practical matter, an experimentalist can place a jet into
a crossflow only to within machining tolerances. Whether or not there is a perfectly
arranged nozzle alignment that will create a symmetric flow is not yet known.

4.1.2. CVP development

The ensemble-averaged end views in figure 9 also show an important structural
difference between the r = 10 and r = 20 jets. The CVP development in the r = 20
jet occurs farther downstream in rd-space than the CVP development in the r = 10
jet. CVP development refers to a progression from a circular jet exit, to an oval
deformation, to a kidney shape, and finally to the position where the peak local jet
concentration moves off the centreline (z = 0) plane. Different formation rates are
evident from the end-view averages at x = rd; the r = 20 jet still has its maximum
concentration value along the centreline, while the r = 10 jet has its maximum values
off centreline in or near the CVP cores. The delayed CVP development in the 20:1
jet is seen in ensemble-averaged plan-view images shown in figure 10. Figure 10(a)
shows the y = 1

2
rd (or y = 5 d) plane of the r = 10 jet. For comparison, (b) shows

the r = 20 jet at y = 1
2
rd, and (c) shows the r = 20 jet at y = 5 d. It is clear that the

r = 10 jet shows a kidney shape consistent with development of the CVP that is much
further progressed than either r = 20 case. In fact the higher r = 20 jet concentration
contours are still oval shaped. The r = 10, y = 5 d image shown in figure 10 adds to
the work of Coelho & Hunt, who present data for r = 10 at y = 3 d and y = 4 d.

Note that the plan views shown in figure 10 are near enough to the jet nozzle that
the jet size no longer scales strictly on rd. This is a result of the transition from a local
scaling on d in the vortex interaction region to an rd scaling further downstream.
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Figure 11. The presence of jet fluid near the tunnel wall for the r = 5 jet is shown in both
the (a) ensemble-averaged image and (b) an instantaneous image. Both images are 5 rd by 4 rd.
Rej = 16 600.

It is important to remember that the rd scaling is accomplished by changing the jet
diameter; this implies that in images employing the same rd length scale, for example
figures 10(a) and 10(b), the r = 10 jet exit diameter is twice that of the r = 20 jet exit
diameter. The transition from d-scaling to rd-scaling is the reason the r = 20, y = 1

2
rd

plan view plane is smaller than the r = 10 plane also at y = 1
2
rd.

4.1.3. The r = 5 jet

The side-view images of the r = 5 jet in figure 11 show that it never truly separates
from the wall, yielding an average concentration of jet fluid at the wall equal to
approximately 0.1%. An instantaneous image, figure 11(b), reveals that this average
is the result of 1% concentration jet fluid occurring intermittently at the wall. It is
the lack of true separation from the tunnel wall that initially leads us to believe the
r = 5 jet belongs to a different regime of jets in crossflow than the r = 10 to r = 25
jets, probably due to wall effects best modelled by image vortices. This issue will be
explored further as different results are presented.

4.2. Instantaneous jet structure

Instantaneous realizations of the jet concentration field are very different from the
corresponding ensemble-averaged fields. Figure 12 shows a typical instantaneous side-
view image through the z = 0 plane of an r = 10 jet. Concentration profiles through
the jet are shown at five locations; the ensemble-averaged profiles are included on
each instantaneous profile. The average is characterized by a smooth shape, which
is Gaussian when sliced perpendicularly to the jet direction, while the instantaneous
profiles are marked by sharp vertical rises in concentration resulting in small plateaus
of high concentration fluid. The Gaussian-shaped average is a result of the unsteady
dynamic motion of the high concentration regions.

The side-view image, figure 12, shows that free-stream fluid penetrating deeply into
the jet. Penetrations from the upper edge occur almost to the jet centreline; penetration
from the lower edge occurs to the centreline. These free-stream penetrations, especially
from the upper edge, and the sharp rises in the instantaneous jet concentration field
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Figure 12. Instantaneous jet concentration field, side view, r = 10, Rej = 16 600.

result in a clearly defined edge between the presence of jet fluid and its absence. A
fixed probe placed along the upper edge of the jet would find fluctuating periods
between 0% (no jet fluid) and a finite value (jet fluid present).

In side-view images, other vortical structures are visualized as well. The jet shear
layer is shown, but resolution is not adequate in the vortex interaction region for a
clear presentation. The horseshoe vortex system is never seen because the crossflow
boundary layer is not seeded in this experiment. Likewise in this r = 10 jet, the wake
structures are not seen because no jet fluid is present in them. This image shows an
instantaneous slice through the centre of the CVP.

End-view images clearly show the CVP. Figure 13 displays an r = 10 jet at x = 2 rd.
In this image, the CVP is tilted to the left. The peak concentration is in the upper
side of the right-hand CVP lobe (see the vertical profile), which is in contrast to the
higher concentration of the left lobe seen in the ensemble average. Multiple images
(Smith 1996) show that the CVP is most often asymmetric, with one lobe typically
maintaining a 5% to 15% greater concentration than the other; that value can rise
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Figure 13. Instantaneous jet concentration field, end view, x = 2 rd, r = 10, Rej = 33 000. Plots
correspond to lines shown on the image.

to as high as 50% in individual images. Instantaneously, the dominant lobe can be
either the right- or left-hand vortex of the CVP.

Figure 14 displays a plan-view image of the r = 10 jet at y = 2 rd. On the left-hand
side of this image, the jet is passing into the image plane, and on the right-hand side,
the image plane is near the centre of the jet. Figure 14 shows that the free-stream
penetrations along the upper edge of the jet occur as uniform streaks along the
z-axis, giving the jet an axisymmetric mode as it progresses downstream. Sinusoidal
variation is also observed (Smith 1996). The concentration profiles shown are chosen
to highlight the axisymmetric nature, showing the positions where the jet fluid occurs.
Again, note the sharp rises in concentration followed by small plateaus of similar
concentration.

The r = 20 jet has a qualitatively similar instantaneous structure to the r = 10 jet,
but it has specific features that are unique. To facilitate a complete comparison, three
instantaneous images of the r = 20 jet are shown to complement the three r = 10
images shown in figures 12–14. Figure 15 shows an instantaneous side view of the jet
concentration, figure 16 an end view and figure 17 a plan view.

The most striking difference between the r = 10 and r = 20 jet is the presence
of jet fluid in the wake structures. Section 5 will provide a more detailed analysis,
including a proposed mechanism for its appearance. In this section, only its physical
features will be characterized. The jet fluid enters the wake in the form of thin fingers
of fluid that can contain as high as 0.5% concentration jet fluid. These fingers remain
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Figure 14. Instantaneous jet concentration field, plan view, y = 2 rd, r = 10, Rej = 16 600.

primarily along the centreline of the jet as can be seen in figures 15 and 16; they
connect to the jet body, but not to the tunnel wall. The connection to the jet body
can occur to either CVP lobe, or to the jet centre, but if it connects to a CVP lobe,
it is always connected to the weaker lobe (Smith 1996); connection to the right-hand
CVP lobe is shown in figure 16.

The variations along the upper edge of the r = 20 jet, figure 15, are greater than
those in the r = 10 jet. Penetration along the upper edge can occur past the jet
centerline as large rolling structures form. The end-view image, figure 16, also shows
the presence of the rollers along the upper edge of the jet, displaying out-of-plane
motion in the upper left portion of the image.

Like the r = 10 case, the CVP shown in figure 16 is asymmetric with the peak
values occurring in the left-hand lobe. Typical images show a peak concentration
difference of 5% to 15% between the left- and right-hand lobes with peak values
ranging as high as 50%. In the r = 20 jet the lower-concentration lobe always lies
below the higher-concentration lobe, and the higher-concentration lobe may be larger
in size as well.
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Figure 15. Instantaneous jet concentration field, side view, r = 20, Rej = 16 600.

Since the penetration of the r = 20 jet is slightly greater than the r = 10 jet, figure
7, the plan-view image at y = 2 rd, figure 17, cuts slightly lower through the CVP
than the r = 10 image. This image shows the dominant CVP lobe switching from
side to side. It switches from the lower edge of the image to the top between lines
B-B and C-C, and then from the top edge to the bottom between lines C-C and D-D.
Quantitative statistics of the time the CVP remains dominant in a single lobe are not
possible from these images due to a lack of instantaneous velocity data, but figure 17
gives a qualitative sense of the switching characteristics.

5. Jet fluid in the wake structures
Jet fluid has been shown to be present in the wake structures in an r = 20 jet, but

not an r = 10 jet. Jet fluid in the wake structures has been previously reported by
Lozano et al. (1993), and can be seen in the images of Shen (1991) for a vectored
rectangular jet. Fric & Roshko saw no jet fluid in the wake structures up to r = 10. In
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Figure 16. Instantaneous jet concentration field, end view, x = 2 rd, r = 20, Rej = 33 000.
Plots correspond to lines shown on the image.

this section a mechanism for the presence of jet fluid in the wake is proposed, based
upon the analysis of Fric & Roshko (1994).

The transition from no jet fluid in the wake to its presence occurs from r = 10
to r = 15. Figure 18 shows instantaneous images at each of the six velocity ratios
from 10 to 15. In these images, jet fluid is seen to penetrate the wake structures to
an increasing depth with increasing velocity ratio. The r values at which jet fluid
penetration occurs are insensitive to Reynolds number over a factor of four (8400
to 33 000), and also insensitive to the relative ratios of the crossflow boundary layer
thickness, the jet exit boundary layer thickness, and the jet exit diameter.

Fric & Roshko (1994) identify crossflow boundary layer vorticity as the origin of
the vorticity in the wake structures, using a mechanism summarized in figure 19.
Figures 19(a) and 19(b) are simultaneous side- and plan-view photographs of smoke
wires seeding the crossflow boundary layer of an r = 4 jet (figure 28 from Fric &
Roshko 1994). Figure 19(c), an r = 5 jet, is the best available match to this case from
the PLIF data set. The Fric & Roshko images complement the PLIF image because
they seed the crossflow boundary layer, and the PLIF image seeds the jet fluid. The
label b-1 shows the crossflow boundary layer separation, and b-2 shows the same
vortex after it has become attached to the lee side of the jet and turned up, becoming
the wake structures. Fric & Roshko refer to structure b-2 as the footprint of the wake
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Figure 17. Instantaneous jet concentration field, plan view, y = 2 rd, r = 20, Rej = 16 600.

vortex. Label a-3 marks dense smoke, showing a bursting event (their terminology),
where crossflow boundary layer fluid is pulled upward into the wake structures.

The three events, 1 the boundary layer separation, 2 the emergence of the wake
vortex footprint, and 3 the bursting event, are labelled in each image, (a), (b) and (c) of
figure 19, creating nine markers which show each event in each image. The assertion
that the wake vorticity has its origin in the vorticity of the crossflow boundary layer
is supported by Coelho & Hunt (1989) who conclude that little jet vorticity diffuses
into the wake region.

Figure 19(c) suggests that Fric & Roshko may have overestimated the penetration
of the bottom edge of the r = 4 jet (see figure 13c in Fric & Roshko 1994). They
assume that the bursting event occurs below the jet body, but it is clear that the burst
occurs into the jet path rather than along the jet bottom edge when comparing a-3
and c-3.

Axial flow from a wall boundary condition through a vortex core has been estab-
lished experimentally by Cohn & Koochesfahani (1993). It is suggested here that the
bursting event in the r = 5 jet is caused when the CVP pulls the wake vortex into
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Figure 18. Side-view images, r = 10 to r = 15, 25d by 22.5d, d = 10 mm, Recf = 3300, based on
Ucf and d. (a) r = 10, (b) 11, (c) 12, (d) 13, (e) 14, (f) 15.
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Figure 19. The Fric–Roshko roll-up mechanism, linking boundary layer vorticity to the vorticity
in the wake structures: (a, b) simultaneous boundary-layer seeded smoke-wire photographs of an
r = 4, Rej = 15 200 jet, (a) side view (b) plan view. The best view available matching case PLIF
image (c) is an r = 5, Rej = 16 600 jet.

the jet, stretching it, and increasing its rotational velocity. If one envisions a vortex
ending on a wall, the axial velocity is of order (∆p/ρ)1/2, where ∆p is the difference
between the ambient pressure and the vortex core pressure. The rotational velocity
is of order (2∆p/ρ)1/2, suggesting that the axial velocity can be comparable to the
rotational velocity, a condition common in bursting. Note that in this formulation, it
is the stretching of the vortex that ultimately causes the bursting event.

An extension of the Fric–Roshko mechanism can account for the presence of jet
fluid in the wake structures. Figure 20 displays an r = 5 jet and an r = 20 jet. The
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Figure 20. Instantaneous side-view images: (a) r = 5, Rej = 16 600; (b) r = 20, Rej = 33 000.
In both cases d = 10 mm and image frame is 11d by 22d.

labels R, F and S mark the proposed roll-up position (R), turned-up position where
the wake footprint is visible (F), and vortex stretch position (S). R, F and S in figure
20 correspond to 1, 2 and 3 in figure 19. In the r = 5 jet the three events occur
in the order R, F then S, where the stretch is caused by the CVP. The trajectory of
the r = 20 jet is so vastly different in physical space than the r = 5 case, that it is
proposed that the vertical jet trajectory causes the vortex to stretch, before the wake
footprint occurs. The order of events is now R, S and F. This has the effect of causing
flow along the wake vortex axis from the jet fluid because the end of the vortex not
connected to the jet is still in the form marked b-1 in figure 19, and no flow from
the wall occurs. The extension of the Fric–Roshko mechanism is based upon two
points. First, Cohn & Koochesfahani (1993) also recorded axial flow along a vortex
core from a wake boundary condition. Second, the images of Fric & Roshko show
that the boundary layer vortex has turned up and shows a wake vortex footprint
at approximately d–2d downstream of the jet nozzle, regardless of the velocity ratio.
Since the scaling of the vortex interaction region is based upon d, it is expected that
the earliest footprint position of the crossflow boundary layer vorticity will continue
to occur at d–2d for r > 10.

The result of axial flow from the jet into the wake structures are shown as plan-view
images in figure 21. The jet fluid downstream of the r = 20 jet marks the vortex cores
of the wake structures. The r = 10 case shows no persistent jet fluid in the wake, even
though wake structure vortex cores are present. Figure 21(a) is reminiscent of the von
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Figure 21. Instantaneous plan-view images comparing (a) the r = 20 jet, Rej = 33 000 and
(b) r = 10 jet, Rej = 33 000.
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Figure 22. Instantaneous jet concentration images at high velocity ratios, (a) r = 100 (b) r = 200.
In both cases d = 2.0 mm, images are 125 d by 115 d, Ucf = 1 m s−1.

Kármán vortex street for flow over a cylinder, but the mechanisms which create the
wake structures are entirely different, as discussed by Fric & Roshko (1994).

This analysis of the vortex interaction region is based upon the local jet diameter,
d. This scaling is the same as that of a free jet, but that should not imply that the
region closest to the jet exit in a transverse jet in the range r = 5 to r = 25 will scale
as a free jet. There is no direct analogy between the plan-view images of figure 21,
and the corresponding free jet images shown by Liepmann & Gharib (1992), and the
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Figure 23. Maximum centreline concentration decay plotted with downstream distance s,
normalized by rd.

next section will show that the transverse jet concentration never scales as s−1 for
r < 25 as the free jet does.

It is interesting to ask if an ever decreasing crossflow velocity would cause a region
of the transverse jet to behave as a free jet. Figure 22 shows an r = 100 jet and an
r = 200 jet. The r = 200 case shows that the jet fluid that enters the wake has lifted
far away from the wall (about 60d), raising the possibility that the r = 200 transverse
jet may have free jet characteristics in the region below the wake structures.

6. Maximum centreline concentration decay
Each point of the trajectory data given in § 4 has associated with it a value of jet

fluid concentration. These values, plotted against the downstream coordinate, x, or
the jet centreline coordinate, s, show the maximum centreline concentration decay.

6.1. Centreline decay, rd

Figure 23 displays the centreline concentration decay along the centreline coordinate
s for r = 5 to r = 25. The r = 15, r = 20 and r = 25 lines connect data taken for each
of the two d-cases shown in table 1 (i. e. two different jet diameters). The connection
occurs at s ≈ rd, and is necessary because the relative size of the smaller nozzles and
the relative thickness of the laser sheet causes the maximum concentration values
to be underpredicted near the jet exit. Figure 23 is shown as a log-log plot, so a
power-law decay appears as a straight line. A decay of s−2/3 is the far-field rate
predicted in modelling efforts by Broadwell & Breidenthal (1984) and Hasselbrink
et al. (1997) (both predictions are in x, but s ∼ x in the far field). Decay rates of s−1.3

(best available near-field fit) and s−1 (free jet decay rate) are also shown.
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Figure 24. Maximum centreline concentration decay plotted with downstream distance x,
normalized by rd.

For each jet, the centreline concentration remains 100% through the potential core,
then decays initially at s−1.3, an increase over the decay rate of a free jet, s−1. During
the shared −1.3 decay, the r = 10 to r = 25 jets nearly lie upon the same line when
s is normalized with rd. At s/rd locations specific to each value of r, the centreline
decay branches away from the −1.3 decay rate. Much interest in the transverse jet
results from its enhanced mixing properties, making the regions before and just after
the branch points important areas of study. These branch points are labelled x. The
r = 25 jet is not deemed to have reached a branch point yet, and the different path
of the r = 5 jet is consistent with it belonging to a different class of transverse jets.

The branch points are also present if the decay is shown against x/rd, plotted in
figure 24. The x−2/3 decay is displayed for comparison. The branch points occur at
x = 0.8 rd for the r = 5 jet, at x = 2 rd for r = 10, x = 3 rd for r = 15 and x = 4 rd
for r = 20.

The position of the branch points is insensitive to changes in the jet exit Reynolds
number over a factor of four (8400 to 33 000) as seen in figure 25 for the r = 10 jet.

A scaling analysis using rd normalization will highlight the role of the branch
points. Following Hasselbrink & Mungal (1996), consider only the jet fluid in a
uniform-density transverse jet flow field. The volume flux of jet fluid out of the nozzle
must equal that through an arbitrary plane x = constant well into the far field as
shown in figure 26. Qin = Uj Aj , assuming a uniform jet exit velocity, Uj , and area,
Aj , and

Qout =

∫
A

C V j · dA,

where C is the jet concentration, and V j the local velocity vector.
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Figure 25. Centreline concentration decay of the r = 10 jet over a factor of four change in jet exit
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Figure 26. Integral, control-volume approach to conservation of jet fluid.

Setting Qin = Qout gives

π

4

(rd)2

r
= Cm

∫
A

C

Cm

V j

Ucf

· dA, (6.1)

where Cm is the maximum local centreline (z = 0) concentration. In this experiment
rd is held constant, and if

∫
A
C/CmV j/Ucf · dA is a constant (to be discussed with



110 S. H. Smith and M. G. Mungal

–2

rC (%)

40 5
10
15
20
25

r

30

20

10

0
–1 0 1 2

y/rd (peaks aligned on plot)
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Figure 28. Vertical centreline profiles at x = rd and x = 4 rd: C normalized by local maximum
Cm, y normalized by half-width at half maximum, l1/2.

self-similarity in § 6.2), then in the jet far field,

Cm ∼
1

r
(6.2)

or r Cm is a constant for a specific x/rd location downstream for a range of r.
Physically, the scaling is a result of decreasing d while increasing r causing Qin ∼
rd2 ∼ 1/r for rd a constant.

Figure 27 shows the concentration profiles at x = 4 rd for r = 5 to r = 25. The
vertical axis is now r C and the near-uniform values of r Cm ≈ 33% (the r = 5 jet
deviates from this value) show Cm ∼ 1/r scaling is obtained after the branch points.
Thus the role of the branch points is to transition the flow field from an s−1.3 decay,
occurring along the same decay line, to a decay rate of s−2/3, recovering a Cm ∼ 1/r
relationship.
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Figure 29. Three-dimensional end-view ensemble averages. The height of these images is raised
linearly in proportion to the jet concentration.

Structurally, the branch point positions correspond with the downstream develop-
ment of the CVP. The CVP development in the r = 20 jet occurs at s/rd locations
farther downstream than the r = 10 jet. The branch points maintain the same re-
lationship, r = 10 at branch point x = 2 rd and r = 20 at branch point x = 4 rd.
Other features of the branch points will be discussed through the remainder of this
paper.

6.2. Self-similarity

In its most simple description, a self-similar flow has average velocity, scalar concen-
tration and turbulence statistics that can be collapsed by a single spatial variable.
The concentration profiles in the z = 0 plane do collapse when normalized by their
local maximum value, Cm, and the half-width at half-maximum, l1/2, shown in figure
28 for data before the branch points (x = rd) and after (x = 4 rd). The wake structure
causes the deviation between y/l1/2 = −4 and − 2.

Complete self-similarity requires the (y, z)-plane to collapse to similar profiles.
The ensemble-averaged end-view data are shown again in figure 29 this time as
three-dimensional images, where the height is raised linearly in proportion to the jet
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Figure 30. Three-dimensional r.m.s. images. The height of these images is raised linearly in
proportion to the r.m.s. value.

concentration. These images clearly display different profiles. There is no similarity
among the same r at different x (compare a, b and c together and compare d, e and f
together) and there is no similarity between the same x at different r (compare a with
d, b with e, and c with f). From the end-view profiles it is established that full self-
similarity does not occur in the jet in crossflow for x < 5 rd using rd normalization.
Figure 30 displays three-dimensional images of the r.m.s. end views, serving to confirm
the lack of complete self-similarity.

In the scaling analysis that produced Cm ∼ 1/r, it is assumed that the surface
integral

∫
A
C/CmV j/Ucf · dA is constant. This assumption relies upon the jet being

self-similar, and the result that r Cm ≈ 33% at x = 4 rd is shown to be accurate to
±8% in figure 27. Thus the assumption of self-similarity leads to reasonable results,
despite the lack of complete self-similarity.
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Figure 31. Maximum centreline concentration decay plotted with downstream distance s,
normalized by r2d.

6.3. Centreline decay, r2d

The maximum centreline concentration decay plotted against s/r2d is shown in figure
31, and this scaling is seen to align the branch points at s/r2d = 0.3, which corresponds
to x/r2d ≈ 0.2. The position of the branch points at x/r2d ≈ 0.2 is the best use of
normalizing by r2d and provides a convenient definition of the jet far field, x/r2d > 0.2.
Based upon the lack of self-similarity seen in the end views, the region x/r2d < 0.2 is
labelled the near field. The near-field label is due in part to the belief that effects from
the d-scaled vortex interaction region still persist at x/r2d < 0.2; a good example is
the formation process of the CVP.

The end-view data of figure 29 suggest that self-similarity may occur beginning
at the branch points. The possibility is raised by the similarity between the r = 10
jet at x = 2 rd, (figures 29b and 30b) and r = 20 at x = 4 rd (figures 29f and 30f)
notwithstanding the lack of symmetry and wake structures. Additional data would
be necessary to determine if self-similarity occurs beginning from the branch point
positions.

6.4. Centreline decay, d

Figure 32 displays the maximum centreline concentration decay plotted against s/d.
The 100% concentration regions show that the potential core lengths, lpc, increase
with increasing r: lpc = 1.5 d at r = 5 and lpc = 3 d at r = 25. The differences in
potential core length make the r = 5 jet the best mixer if the final desired maximum
jet concentration is greater than 20%. Below 20% the branch points cause the
decay lines to cross, which makes the choice for r dependent upon the final desired
concentration.
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Figure 32. Maximum centreline concentration decay plotted with downstream distance s,
normalized by d.

The crossing of the decay lines is postulated to be the physical mechanism behind
the flame length minimum described in Broadwell & Breidenthal (1984). They dis-
charge water jets containing an alkali, phenolphthalein, which colours the jet red,
into an acidic liquid crossflow. When chemically mixed with φ parts by volume of
crossflow fluid, the jet becomes colourless. They referred to the distance to colour
disappearance as the flame length even though there is no heat release involved.
Flame length data from Broadwell & Breidenthal are included in figure 33, which
also includes flame length data of a propane flame from Brzustowski (1977). The
flame length is plotted against 1/r so that 1/r = 0 corresponds to free jet data. Figure
33(a) shows that in both cold and combusting flows a minimum flame length is found
at r ≈ 20.

The physical mechanism which explains the minimum flame length is the crossing
of the decay lines when d-scaled, figure 32. For example if a final concentration of
10% is required (see arrow in figure 32) the five r cases each require a different
chord length to reach the 10% point. An order-of-magnitude plot of these different
lengths is presented as figure 33(b), and the minimum flame length has been recreated.
Furthermore, it is clear from figure 32 that the minimum flame length will vary with
stoichiometry.

Note, the centreline decay rates show that the branch points are the physical
mechanism behind the minimum flame length. The true local maximum value as seen
in end-view data is often off the z = 0 plane. Therefore figure 32 will underpredict
actual flame lengths and is not recommended for that use, especially taking into
account jet asymmetry.
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Figure 33. Measured flame lengths of the transverse jet. (a) Liquid data from Broadwell &
Breidenthal (1984), φ is volume of ambient fluid (seeded with acid) required to turn jet fluid (seeded
with coloured base) clear. A propane flame (air to fuel ratio of 24) has the same minimum. (b)
Sketch of flame length for current centreline data, mixed to 9 parts ambient fluid for each part jet
fluid (a concentration of 10%).

7. Probability density functions of mixture fraction
The probability density function (p.d.f.) of mixture fraction, ξ, is calculated at a

point by forming histograms of the instantaneous pixel values, giving

p(ξ) dξ = Probability{ξ − 1
2
∇ξ 6 ξ 6 ξ + 1

2
∇ξ} (7.1)

The p.d.f., p, is normalized such that,∫ 1

0

p(ξ) dξ = 1. (7.2)

Recent liquid mixing layer results by Karasso & Mungal (1996) categorize p.d.f.
results into three types: non-marching, marching and tilted, described in figure 34.
The preferred value of concentration in a non-marching p.d.f. is invariant across
the mixing region; the preferred value in a marching p.d.f. approaches the average
layer concentration, merging smoothly with the delta function at zero concentration.
A tilted p.d.f. slants toward the average profile, but the probability of the preferred
concentration goes to zero before it merges at zero concentration. The results of
Karasso & Mungal (1996) show that the fully developed two-dimensional, turbulent
mixing layer evolves to a tilted p.d.f. A broader discussion of the p.d.f. and its
implications for mixing can be found in Broadwell & Breidenthal (1982).

To obtain the volume of data points necessary to construct a p.d.f., it is necessary
(Clemens & Mungal 1995; Karasso & Mungal 1996) to use multiple data points
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Figure 34. Idealized p.d.f.s: (a) non-marching type, (b) marching type, (c) tilted type.
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Figure 35. P.d.f. statistics acquired at positions marked. Nominal locations measured (solid lines)
and actual range of columns used (dashed lines) are marked.
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(b) r = 10, x = 4.0 rd, Rej = 16 600.

from each PLIF image to represent a single point of the p.d.f. The complete p.d.f.
consists of multiple single-point p.d.f. statistics acquired along a line of data called
a column, even though it is not strictly vertical, as shown in figure 35. Histograms
are constructed from one hundred columns of data, from each instantaneous image,
marked by dashed lines resulting in the 100 points in each row creating the local
single-point p.d.f. The nominal location of the p.d.f. measured is given by the solid
line.

P.d.f. results for the r = 10 jet at x = 1.2 rd and x = 4.0 rd are shown in figure 36.
The p.d.f. is shown as a contour plot: the vertical axis is the distance across the jet;
the horizontal axis the concentration, C . The p.d.f. value, the probability of finding
jet fluid at the specified concentration, is shown as contours. The ensemble-averaged
values and conditional average (average when jet fluid is present greater than 0.25%)
are also shown. The contour plots display the full structure of the p.d.f.

A more traditional display of the p.d.f. is shown in figure 37(a, b), which duplicates
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Figure 37 (a–d). For caption see facing page.

results from the contour plot of figure 36. Figures 37(a) and 37(b) show p.d.f. results
along the upper edge of the jet corresponding to L1 and L2 in figure 36. From figure
37, it is possible to classify the p.d.f. as non-marching, marching, or tilted. In the case
of the r = 10 jet, the p.d.f. is non-marching at x = 1.2 rd and tilted at x = 4.0 rd. Thus
the r = 10 jet has evolved to tilted after its branch point at x = 2 rd. The pattern
continues and the r = 15 jet evolves as well, shown in figures 37(c) and 37(d). The
r = 20 jet remains non-marching up to x = 4 rd, figure 37(f), and it is suspected that
the transition to a tilted p.d.f. occurs just after the branch point. Figure 37(g) shows
that the r = 25 jet is still non-marching at x = 4 rd, and figure 37(h) shows that the
r = 5 jet is also non-marching at x = 4 rd. That the r = 5 jet does not transition after
its branch point is consistent with it belonging to a different regime of transverse jets.

The p.d.f. results are consistent with the structural picture of the jet. The r = 20 jet
is seen to have deeper upper-edge free-stream penetrations than the r = 10 jet. In the
region considered, x > 2 rd, the r = 10 jet had already transitioned to a tilted p.d.f.,
while the r = 20 jet was still in its non-marching, near-field region. A non-marching
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Figure 37. P.d.f. of mixture fraction, upper jet edge to centre. Each case is characterized as
non-marching or tilted. Before the branch points, the p.d.f. is non-marching, and after it is tilted.
The r = 5 jet is the lone exception.

p.d.f. has a preferred concentration of jet fluid that is invariant along the radial
direction from which the p.d.f. is measured, regardless of distance from the centreline.
That invariance would require large moving structures along the upper edge of the
jet. Similarly, the tilted p.d.f. shows a preferred concentration that decreases as the
p.d.f. is measured farther from the jet centreline, suggesting a change in the evolution
of the mixing of the jet in crossflow.

8. Conclusions
The results from extensive imaging of the planar concentration field of the jet in

crossflow are presented. Data are obtained using PLIF with acetone vapour, over a
range of r from 5 to 200, covering a range of jet exit Reynolds numbers from 8400
to 41 500. Instantaneous images of the transverse jet are characterized by sharp rises
in concentration resulting in small, distributed regions of high-concentration fluid.
The instantaneous images show deep penetration of free-stream fluid into the upper
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Figure 38. Features of the jet in crossflow for r = 10 to r = 25.

edge of the jet. They also show jet fluid penetrating the wake structures from r = 10
to r = 15, a feature which persists as high as r = 200. Ensemble-averaged images
show that the formation of the CVP is delayed in higher-velocity-ratio jets, and that
the jet concentration is asymmetric about the z = 0 plane. Maximum centreline
concentration decay results show that the jet initially decays at a rate s−1.3, and then
adopts a slower rate, believed to reach s−2/3 from modelling work. Quantifying the
mixing across the upper edge of the z = 0 plane shows that the jet evolves from a
non-marching to a tilted p.d.f. character.

These results are interpreted using three length scalings, d, rd, and r2d. Results
are summarized in figure 38. The vortex interaction region shows boundary layer
separation and vortex roll-up events that scale on jet diameter. The d-scaling allows
for structural effects that are dependent on r. These include the bursting events which
peak at r = 4 seen by Fric & Roshko and the jet fluid in the wake structures which
appear for r > 10. The r-dependent effects also include the delayed formation rate of
the CVP in higher-velocity-ratio jets.

The trajectory and physical dimensions of the jet scale with rd. When the mean
centreline concentration decay is plotted against s/rd, each jet has an initial decay
proportional to s−1.3, collapsing nearly upon the same line. Each jet then branches
away, and together the jets recover a 1/r maximum concentration scaling. The
branch points occur at a uniform position of s/r2d = 0.3. The r2d-scaling provides
a convenient boundary between the region of decay rate s−1.3, and the slower decay
rate region. Self-similarity is not seen in the ensemble-averaged end views, although
it is possible that self-similarity occurs after the branch point positions. The lack of
self-similarity in the s−1.3 region is the reason why it is labelled the near field in this
work. The region x/r2d > 0.2 is labelled the far field.

It should be noted that the near field is the region of CVP development, and the
far field is the region where the CVP is fully developed. Thus the CVP itself does not
enhance mixing compared to the free jet as the CVP is in the far-field (s−2/3) region.
Rather it is the structural formation of the CVP that corresponds to the enhanced
mixing region, the near field.
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Because of the changes in the transverse jet which occur at the branch points, the
branch points are viewed as a transition region in the flow. This view is supported
by the p.d.f. results, which show a non-marching character before the branch points,
and a tilted character after the branch points. The change in character is consistent
with the deeper penetrations of free-stream fluid along the upper edge of the r = 20
jet than the r = 10 jet.

The results presented in this study are presumed valid for r = 10 to r = 25. The
transverse jet is a flow-field that has shown different regimes; in fact the r = 5 jet is
believed to be in a different regime, where wall effects (image vortices) are important.
As a final note and as a practical result, creating a transverse jet flow field that
is symmetric about z = 0 is not regularly accomplished in laboratory studies, thus
determination of the ultimate symmetry or asymmetry of the transverse jet is an open
question.

This work was supported by GRI contract # 5093–260–2697, R. V. Serauskas,
technical monitor. S. H. Smith was sponsored by the NDSEG fellowship from 1991
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